A CNNA-Based Lightweight Multi-Scale Tomato Pest and Disease Classification Method

نویسندگان

چکیده

Tomato is generally cultivated by transplanting seedlings in ridges and furrows. During growth, there are various types of tomato pests diseases, making it challenging to identify them simultaneously. To address this issue, conventional convolutional neural networks have been investigated, but they a large number parameters time-consuming. In paper, we proposed lightweight multi-scale pest disease classification network, called CNNA. Firstly, constructed dataset diseases consisting 27,193 images with 18 categories. Then, compressed optimized the ConvNeXt-Tiny network structure maintain accuracy while significantly reducing parameters. addition, feature fusion module improve extraction ability model for different spot sizes pests, global channel attention mechanism enhance sensitivity features. Finally, was trained deployed Jetson TX2 NX inference video stream data. The experimental results showed that CNNA outperformed pre-trained models such as MobileNetV3, MobileVit, ShuffleNetV2 terms all parameters, recognition 98.96%. Meanwhile, error rate, time single image, FLOPs, size were only 1%, 47.35 ms, 0.37 M, 237.61 1.47 MB, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lightweight Inference Method for Image Classification

We demonstrate a two phase classification method, first of individual pixels, then of fixed regions of pixels for scene classification—the task of assigning posteriors that characterize an entire image. This can be realized with a probabilistic graphical model (PGM), without the characteristic segmentation and aggregation tasks characteristic of visual object recognition. Instead the spatial as...

متن کامل

Numerical solution of nonlinear SPDEs using a multi-scale method

‎In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets‎. ‎The method combines implicit collocation with the multi-scale method‎. Using the multi-scale method‎, ‎SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain‎. ‎The stability and c...

متن کامل

Multi-class SVM Based Classification Approach for Tomato Ripeness

This article presents a content-based image classification system to monitor the ripeness process of tomato via investigating and classifying the different maturity/ripeness stages. The proposed approach consists of three phases; namely pre-processing, feature extraction, and classification phases. Since tomato surface color is the most important characteristic to observe ripeness, this system ...

متن کامل

Developing a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature

According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...

متن کامل

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is &#10its complex and time-consuming computations in real-time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15118813